1,266 research outputs found

    UAV flight coordination for communication networks:Genetic algorithms versus game theory

    Get PDF
    The autonomous coordinated flying for groups of unmanned aerial vehicles that maximise network coverage to mobile ground-based units by efficiently utilising the available on-board power is a complex problem. Their coordination involves the fulfilment of multiple objectives that are directly dependent on dynamic, unpredictable and uncontrollable phenomena. In this paper, two systems are presented and compared based on their ability to reposition fixed-wing unmanned aerial vehicles to maintain a useful airborne wireless network topology. Genetic algorithms and non-cooperative games are employed for the generation of optimal flying solutions. The two methods consider realistic kinematics for hydrocarbon-powered medium-altitude, long-endurance aircrafts. Coupled with a communication model that addresses environmental conditions, they optimise flying to maximising the number of supported ground-based units. Results of large-scale scenarios highlight the ability of genetic algorithms to evolve flexible sets of manoeuvres that keep the flying vehicles separated and provide optimal solutions over shorter settling times. In comparison, game theory is found to identify strategies of predefined manoeuvres that maximise coverage but require more time to converge

    Metal release under anaerobic conditions of urban soils of four European cities

    Get PDF
    Urban soil contamination may represent an environmental threat in view of their proximity to humans. The ecological homogenization of urban areas has been postulated, and as the sources of pollution are the same in most European cities, it is possible that soil contamination is another factor of convergence. The current climate change with consequent increase of extreme rain events may affect the mobility of potentially toxic elements (PTE) thus increasing the risks. If the soil is submerged, Eh decreases and causes the solubilization of Fe and Mn oxides, which are important carriers of PTE. We compared the release of Cu, Pb, and Zn from 48 soils of four cities (namely Glasgow, Ljubljana, Sevilla, and Torino) when submerged for up to 30 days. A decrease of the redox potential was observed in all soils after a few days and an increase of Mn and then Fe in solution. Cu, Pb, and Zn were consequently released to the solution according to the general soil contamination. Despite the marked differences in soil properties, the reaction to anaerobiosis appeared to be similar in all samples indicating that waterlogging of urban soil contaminated with PTE may pose a serious environmental risk and substantiating the hypothesis of ecological convergence

    Systematic Approach for the selection of monitoring technologies in CO2 geological storage projects. Application of multicriteria decision making

    Get PDF
    Geologic storage of carbon dioxide (CO2) has been proposed as a viable means for reducing anthropogenic CO2 emissions. Once injection begins, a program for measurement, monitoring, and verification (MMV) of CO2 distribution is required in order to: a) research key features, effects and processes needed for risk assessment; b) manage the injection process; c) delineate and identify leakage risk and surface escape; d) provide early warnings of failure near the reservoir; and f) verify storage for accounting and crediting. The selection of the methodology of monitoring (characterization of site and control and verification in the post-injection phase) is influenced by economic and technological variables. Multiple Criteria Decision Making (MCDM) refers to a methodology developed for making decisions in the presence of multiple criteria. MCDM as a discipline has only a relatively short history of 40 years, and it has been closely related to advancements on computer technology. Evaluation methods and multicriteria decisions include the selection of a set of feasible alternatives, the simultaneous optimization of several objective functions, and a decision-making process and evaluation procedures that must be rational and consistent. The application of a mathematical model of decision-making will help to find the best solution, establishing the mechanisms to facilitate the management of information generated by number of disciplines of knowledge. Those problems in which decision alternatives are finite are called Discrete Multicriteria Decision problems. Such problems are most common in reality and this case scenario will be applied in solving the problem of site selection for storing CO2. Discrete MCDM is used to assess and decide on issues that by nature or design support a finite number of alternative solutions. Recently, Multicriteria Decision Analysis has been applied to hierarchy policy incentives for CCS, to assess the role of CCS, and to select potential areas which could be suitable to store. For those reasons, MCDM have been considered in the monitoring phase of CO2 storage, in order to select suitable technologies which could be techno-economical viable. In this paper, we identify techniques of gas measurements in subsurface which are currently applying in the phase of characterization (pre-injection); MCDM will help decision-makers to hierarchy the most suitable technique which fit the purpose to monitor the specific physic-chemical parameter

    Beating noise with abstention in state estimation

    Get PDF
    We address the problem of estimating pure qubit states with non-ideal (noisy) measurements in the multiple-copy scenario, where the data consists of a number N of identically prepared qubits. We show that the average fidelity of the estimates can increase significantly if the estimation protocol allows for inconclusive answers, or abstentions. We present the optimal such protocol and compute its fidelity for a given probability of abstention. The improvement over standard estimation, without abstention, can be viewed as an effective noise reduction. These and other results are exemplified for small values of N. For asymptotically large N, we derive analytical expressions of the fidelity and the probability of abstention, and show that for a fixed fidelity gain the latter decreases with N at an exponential rate given by a Kulback-Leibler (relative) entropy. As a byproduct, we obtain an asymptotic expression in terms of this very entropy of the probability that a system of N qubits, all prepared in the same state, has a given total angular momentum. We also discuss an extreme situation where noise increases with N and where estimation with abstention provides a most significant improvement as compared to the standard approach

    Radiation-induced decomposition of the metal-organic molecule Bis(4-cyano-2,2,6,6-tetramethyl-3,5-heptanedionato)copper(II)

    Get PDF
    The effects of vacuum ultraviolet radiation on the adsorbed copper center molecule bis(4-cyano-2,2,6,6- tetramethyl-3,5-heptanedionato)copper(II) (or Cu(CNdpm)2), (C24H36N2O4Cu, Cu(II)) was studied by photoemission spectroscopy. Changes in the ultraviolet photoemission spectra (UPS) of Cu(CNdpm)2, adsorbed on Co(1 1 1), indicate that the ultraviolet radiation leads to decomposition of Cu(CNdpm)2 and this decomposition is initially dominated by loss of peripheral hydrogen

    Radiation-induced decomposition of the metal-organic molecule Bis(4-cyano-2,2,6,6-tetramethyl-3,5-heptanedionato)copper(II)

    Get PDF
    The effects of vacuum ultraviolet radiation on the adsorbed copper center molecule bis(4-cyano-2,2,6,6- tetramethyl-3,5-heptanedionato)copper(II) (or Cu(CNdpm)2), (C24H36N2O4Cu, Cu(II)) was studied by photoemission spectroscopy. Changes in the ultraviolet photoemission spectra (UPS) of Cu(CNdpm)2, adsorbed on Co(1 1 1), indicate that the ultraviolet radiation leads to decomposition of Cu(CNdpm)2 and this decomposition is initially dominated by loss of peripheral hydrogen

    Identification of Differentially Expressed MicroRNAs in Osteosarcoma

    Get PDF
    A limited number of reports have investigated the role of microRNAs in osteosarcoma. In this study, we performed miRNA expression profiling of osteosarcoma cell lines, tumor samples, and normal human osteoblasts. Twenty-two differentially expressed microRNAs were identified using high throughput real-time PCR analysis, and 4 (miR-135b, miR-150, miR-542-5p, and miR-652) were confirmed and validated in a different group of tumors. Both miR-135b and miR-150 have been previously shown to be important in cancer. We hypothesize that dysregulation of differentially expressed microRNAs may contribute to tumorigenesis. They might also represent molecular biomarkers or targets for drug development in osteosarcoma
    corecore